График функции y=f(x)+b

График функции y=f(x)+b  (b>0) можно получить из графика функции y=f(x) с помощью параллельного переноса (сдвига) вдоль оси Oy на b единиц вверх.

При таком преобразовании каждая точка (x; y) графика функции y=f(x) переходит в точку (x; y+b) графика функции y=f(x)+b (то есть абсцисса (координата x) каждой точки остается без изменения, а ордината (координата y ) увеличивается на b.

Один из вариантов преобразования — осуществить параллельный перенос начала отсчёта, точки O(0;0), в точку O1(0;b) и построить график y=f(x) с началом отсчёта от точки O1.

Примеры.

1) График функции y=x²+3 может быть получен из графика функции y=x² с помощью параллельного переноса вдоль оси Oy на 3 единицы вверх.

Строим параболу y=x². Затем переносим каждую из основных точек на 3 единицы вверх.

grafik-funkcii-y-f-x-b

y=x²+3 из y=x²

Можно перенести только вершину параболы, точку (0; 0), на 3 единицы вверх, в точку (0; 3), и от новой вершины строить параболу y=x² (1 единица вправо, 1 — вверх; 1 единица влево, 1 — вверх; 2 единицы вправо, 2 — вверх и т.д.). (Фактически, в этом случае осуществляется параллельный перенос начала отсчёта из точки O(0; 0) в точку O1(0; 3), и строится график y=x² с новым началом отсчёта от точки O1).

1) График функции y=x³+2 может быть получен из графика функции y=x³ с помощью параллельного переноса вдоль оси Oy на 2 единицы вверх.

Можно обойтись без построения начального графика y=x³, достаточно обозначить его основные точки, и выполнить параллельный перенос каждой из них на 2 единицы вверх.

grafik-funkcii-y-x^3-2

y=x³+2 из y=x³

3) График функции y=√x+4 может быть получен из графика функции y=√x параллельным переносом на 4 единицы вверх вдоль оси Oy.

Строим график функции y=√x по основным точкам. Затем переносим каждую из этих точек вверх на 4 единицы.

parallelnyj-perenos-grafikov

Через полученные точки проводим ветвь параболы:

preobrazovanie-grafikov-sdvig

В следующих раз рассмотрим рассмотрим построение графиков вида y=f(x)-b.

Преобразование графиков позволяет на основе графиков элементарных функций получать графики сложных функций. Умение преобразовывать графики в алгебре пригодится не только при изучении функций, но и при решении уравнений и неравенств, в частности, при решении заданий с параметрами.

       

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>