Кубическая функция

Кубическая функция — это функция вида y=ax³, где a — число (a≠0).

График кубической функции называется кубической параболой.

Для начала рассмотрим свойства и график кубической функции y=x³  (при a=1).

Свойства функция y=x³:

1) Область определения — множество действительных чисел:

D: x∈(-∞;∞).

2) Область значений — все действительные числа:

E: y∈(-∞;∞).

3) Функция имеет один нуль:

y=0 при x=0.

4) Точка O (0;0) делит кубическую параболу на две равные части, каждая из которых называется ветвью кубической параболы. Ветви кубической параболы симметричны  относительно точки O - начала координат.

Отсюда следует, что противоположным значениям x соответствуют противоположные значения y: (-x)³= -.

5) Функция возрастает на всей числовой прямой.

6) Промежутки знакопостоянства: функция принимает положительные значения при x∈(0;∞) (или  y>0 при x>0);

функция принимает отрицательные значения при x∈(-∞;0) (или y<0 при x<0).

 

Чтобы построить график кубической функции, возьмём несколько точек.

Берём точки с абсциссами x=0, x=±1, x=±2, x=±3 и находим соответствующие значения функции:

y=0³ =0; y=1³ =1; y=(-1)³ =-1; y=2³ =8; y=(-2)³ =-8.

Получили точки с координатами (0;0), (1; 1), (-1; -1), (2; 8), (-2; -8).

Удобно результаты вычислений оформлять в виде таблицы:

    \[\begin{array}{*{20}{c}} x&\vline& { - 2}&\vline& { - 1}&\vline& 0&\vline& 1&\vline& 2\\ \hline y&\vline& { - 8}&\vline& { - 1}&\vline& 0&\vline& 1&\vline& 8 \end{array}\]

Эти точки отмечаем на координатной плоскости и строим кубическую параболу:

kubicheskaya-funkciya

 

График функции y=ax³ при a≠1 (a≠0) получают из графика функции y=x³ при помощи геометрических преобразований.

Функция y=x³ — один из частных случаев степенной функции

    \[y = {x^\alpha },\]

где α — любое действительное число.

В курсе алгебры из частных случаев степенной функции мы уже встречались с квадратичной функцией y=x² и функцией обратной пропорциональности

    \[y = \frac{1}{x}.\]

       

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>