График функции y=-f(x)

Преобразование графиков, в частности, симметрия — инструмент, который даёт возможность на основе графиков элементарных функций быстро и легко строить графики большого количества функций.

График функции y= -f(x) можно получить из графика y=f(x) с помощью симметрии относительно оси Ox. При таком преобразовании каждая точка (x; y) графика y=f(x) переходит в точку (x; -y) графика y= -f(x):

(x; y) → (x; -y),

то есть абсцисса (x) каждой точки начального графика остаётся неизменной, а ордината (y) меняется на противоположную.

Преобразование симметрии относительно оси абсцисс точки, лежащие на оси Ox, переводит в эти же точки (то есть они остаются на месте).

Примеры.

1) График функции y= -x² может быть получен из графика функции y=x² при помощи симметрии относительно оси Ox.

preobrazovanie-grafikov-simmetriya

График y= -x² из графика y=x²

Строим график функции y=x² (достаточно отметить его базовые точки).

Каждую из точек отражаем симметрично относительно оси Ox:

   (0; 0) → (0; 0),

   (1; 1) → (1; -1),

   (-1; 1) → (-1; -1),

  (2; 4) → (2; -4),

  (-2; 4) → (-2; -4),

  (3; 9) → (3; -9),

(-3; 9) → (-3; -9)

и т.д.

 

 

2) График функции y= -√x можно получить, отобразив симметрично относительно оси абсцисс график функции y=√x:

grafik-minus-koren-iz-iks

 

3) График функции y= -|х| можно получить из графика функции y=|х| с помощью симметрии относительно оси Ox:

grafik-minus-modul

 

Важно вовремя освоить навыки построения графиков с помощью геометрических преобразований, в том числе, преобразований с помощью симметрии, поскольку с графиками в алгебре приходится иметь дело при решении примеров из самых разных разделов.

       

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>