Что такое степень многочлена? Как определить степень одночлена?
Определение.
Степенью многочлена называют наибольшую из степеней входящих в него одночленов.
Обычно, прежде чем искать степень многочлена, его приводят к многочлену стандартного вида, хотя, вообще говоря, это не обязательно.
Итак, чтобы найти степень многочлена:
1) Можно привести многочлен к стандартному виду.
2) Найти степень всех входящих в него одночленов — членов многочлена.
3) Выбрать наибольшую из этих степеней.
Примеры.
Найти степень многочлена:
Решение:
Данный многочлен записан в стандартном виде. Степень первого члена многочлена — одночлена 7x²y — равна 2+1=3. Степень второго члена многочлена — -11xy — равна 1+1=2. Степень третьего члена многочлена — 4y — равна 1. -9 — одночлен нулевой степени.
Наибольшая из степеней одночленов — 3. Таким образом, это — многочлен третьей степени.
Здесь 10x²y³ — одночлен 5-й степени, 32x⁴ — 4-й, -12x²y² — также одночлен 4-й степени. Наибольшая из степеней одночленов — 5. Следовательно, это — многочлен 5-й степени.
3) Сначала приведем данный многочлен к стандартному виду:
14a³ — одночлен 3-й степени, -5a³b — 4-й, 16ab³ — также одночлен 4-й степени. Наибольшая из степеней входящих в многочлен одночленов — 4. Таким образом, данный многочлен имеет четвертую степень.
Хотя в алгебре принято упрощать многочлен, приводя его к стандартному виду, степень можно искать и для многочлена, не записанного в стандартном виде.
1,7x — одночлен 1-й степени, 2y — одночлен 1-й степени, -12 — одночлен 0-й степени. Значит, это — многочлен первой степени.
Одночлен считают многочленом, состоящим из одного члена. 20 — одночлен 0-й степени. Следовательно, 20 является многочленом нулевой степени.